Ruthenium catalysts bearing a benzimidazolylidene ligand for the metathetical ring-closure of tetrasubstituted cycloolefins.
نویسندگان
چکیده
Deprotonation of 1,3-di(2-tolyl)benzimidazolium tetrafluoroborate with a strong base afforded 1,3-di(2-tolyl)benzimidazol-2-ylidene (BTol), which dimerized progressively into the corresponding dibenzotetraazafulvalene. The complexes [RhCl(COD)(BTol)] (COD is 1,5-cyclooctadiene) and cis-[RhCl(CO)2(BTol)] were synthesized to probe the steric and electronic parameters of BTol. Comparison of the percentage of buried volume (%VBur) and of the Tolman electronic parameter (TEP) of BTol with those determined previously for 1,3-dimesitylbenzimidazol-2-ylidene (BMes) revealed that the two N-heterocyclic carbenes displayed similar electron donicities, yet the 2-tolyl substituents took a slightly greater share of the rhodium coordination sphere than the mesityl groups, due to a more pronounced tilt. The anti,anti conformation adopted by BTol in the molecular structure of [RhCl(COD)(BTol)] ensured nonetheless a remarkably unhindered access to the metal center, as evidenced by steric maps. Second-generation ruthenium-benzylidene and isopropoxybenzylidene complexes featuring the BTol ligand were obtained via phosphine exchange from the first generation Grubbs and Hoveyda-Grubbs catalysts, respectively. The atropisomerism of the 2-tolyl substituents within [RuCl2(=CHPh)(PCy3)(BTol)] was investigated by using variable temperature NMR spectroscopy, and the molecular structures of all four possible rotamers of [RuCl2(=CH-o-O(i)PrC6H4)(BTol)] were determined by X-ray crystallography. Both complexes were highly active at promoting the ring-closing metathesis (RCM) of model α,ω-dienes. The replacement of BMes with BTol was particularly beneficial to achieve the ring-closure of tetrasubstituted cycloalkenes. More specifically, the stable isopropoxybenzylidene chelate enabled an almost quantitative RCM of two challenging substrates, viz., diethyl 2,2-bis(2-methylallyl)malonate and N,N-bis(2-methylallyl)tosylamide, within a few hours at 60 °C.
منابع مشابه
Ruthenium-catalyzed ring-closing metathesis to form tetrasubstituted olefins.
[structure: see text]. Increased efficiency for ring-closing metathesis to form tetrasubstituted olefins using N-heterocyclic carbene ligated ruthenium catalysts was achieved by reducing the size of the substituents at the ortho positions of the N-bound aryl rings.
متن کاملCationic ruthenium alkylidene catalysts bearing phosphine ligands† †Electronic supplementary information (ESI) available: NMR spectra and metathesis data. CCDC 784488. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c5dt04506a Click here for additional data file. Click here for additional data file.
The discovery of highly active catalysts and the success of ionic liquid immobilized systems have accelerated attention to a new class of cationic metathesis catalysts. We herein report the facile syntheses of cationic ruthenium catalysts bearing bulky phosphine ligands. Simple ligand exchange using silver(i) salts of non-coordinating or weakly coordinating anions provided either PPh3 or chelat...
متن کاملCationic ruthenium alkylidene catalysts bearing phosphine ligands
The discovery of highly active catalysts and the success of ionic liquid immobilized systems have accelerated attention to a new class of cationic metathesis catalysts. We herein report the facile syntheses of cationic ruthenium catalysts bearing bulky phosphine ligands. Simple ligand exchange using silver(I) salts of non-coordinating or weakly coordinating anions provided either PPh3 or chelat...
متن کاملSimple activation by acid of latent Ru-NHC-based metathesis initiators bearing 8-quinolinolate co-ligands
A straightforward synthesis utilizing the ring-opening metathesis polymerization (ROMP) reaction is described for acid-triggered N,O-chelating ruthenium-based pre-catalysts bearing one or two 8-quinolinolate ligands. The innovative pre-catalysts were tested regarding their behavior in ROMP and especially for their use in the synthesis of poly(dicyclopentadiene) (pDCPD). Bearing either the commo...
متن کاملRuthenium-catalyzed ring-closing metathesis accelerated by long-range steric effect.
Ruthenium-based metathesis catalysts with a N-heterocyclic carbene ligand bearing 2,3,4,5-tetraphenylphenyl moieties (1-TPPh and 1-TPPh*) are developed. The highly active catalyst system has been realized in THF by the combination of 1-TPPh* and CuCl as a phosphine scavenger.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Dalton transactions
دوره 44 21 شماره
صفحات -
تاریخ انتشار 2015